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Abstract—This paper fills the literature gap by considering
the safety-preserving motion planning problem of mobile robots
with process noise. Most existing safe motion planning algorithms
assume ideal system dynamics of mobile robots, which is not
realistic in real-world situations. In this paper, we model the
mobile robot as a nonlinear system with Gaussian noise. To
satisfy the safety constraints on the mobile robot’s trajectory,
we propose a novel probabilistic model predictive control (MPC)
approach where the MPC frequency is determined according to
the safety probability of the mobile robots. We further develop an
online algorithm for numerical computation which can guarantee
the mobile robot’s safety with a prescribed probability threshold.
Due to the probabilistic framework, the computational burden
for the proposed algorithm is much lower than the existing
MPC-based safe motion planning algorithms. Finally, we provide
several numerical simulations as well as physical experiments to
verify the effectiveness of our proposed approach.

Index Terms—Motion planning, mobile robots, safety.

I. INTRODUCTION

Safe and efficient motion planning has been an essential and
challenging task for mobile robots, autonomous vehicles, and
unmanned aerial vehicles (UAV) [1]–[3]. A motion planner
needs to generate a smooth trajectory for the mobile robot to
execute based on both system’s dynamics and environment in-
formation. Important applications can be found in autonomous
driving [4], formation control [5], and cooperative control
[6], to name just a few. Even though motion planning has
been studied for decades, it is still a challenging task for
practical applications [7]. The difficulties of implementing
motion planning algorithms in practical tasks mainly exist in
the following two parts. First, the system model for mobile
robots is inaccurate and there exist process and measurement
noise for real-world dynamics. Second, the motion planning
has to be designed by incorporating the physical constraints,
such as the actuator limits, obstacle avoidance and so on.
This paper studies a further step to tackle the above practical
difficulties where we consider the safety-preserving motion
planning of mobile robots with process noise.
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In recent years, optimization-based methods have received
much attention in mobile robot motion planning research.
An optimization-based method formulates the motion plan-
ning problem as a mathematical optimization problem, which
allows continuous planning and is compatible with various
constraints. One typical category is based on the sequential
quadratic programming (SQP) [8]. The work by Ziegler et
al. [9] demonstrated its capability to solve the nonlinear and
nonconvex motion planning problem. However, as solving a
sequence of quadratic programming within each iteration is
required, SQP is not suitable for real-time implementation on
many hardware platforms. Differential dynamic programming
(DDP) [10] and iterative linear quadratic regulator (ILQR) [11]
enable us to handle the constraint-free motion planning more
effectively. Many recent works have demonstrated their effi-
ciency successfully in complex hardware platforms, including
hexacopter [12] and legged robot [13].

More recently, studies on constrained optimization-based
motion planning appear. The control-limited DDP [14] adds
constraints to Bellman equation in value iteration, but it can
only handle control input constraints. Extended LQR [15]
penalizes the distance measured from the center of an obstacle
to handle collision avoidance with circular objects. Chen et al.
[16], [17] developed the constrained iterative linear quadratic
regulator (CILQR) algorithm to handle the inequality con-
straints through constraint relaxation. Unfortunately, numerical
stability cannot be guaranteed when incorporated with the
barrier function. Aoyama et al. [18] proposed constrained DDP
with penalty methods and active-set approaches. In the most
recent work by Pan et al. [19], the sudden target vehicle
maneuvers uncertainty on the constrained motion planning
problem was addressed via adaptive CILQR through reacha-
bility analysis. However, all these motion planning algorithms
assume ideal system dynamics of mobile robots, which is not
realistic in real-world situations. This motivates our research.

This paper fills the literature gap by considering the safe
motion planning of mobile robots with process noise. The
contributions of this paper are listed as follows:

1) We propose a probabilistic framework to analyze the
safety-preserving motion planning, where the safety is guar-
anteed subject to a probability threshold.

2) We propose a novel probabilistic model predictive control
(MPC) approach where the MPC frequency is determined by
the safety probability during the movement process.

3) We develop an online algorithm for numerical compu-
tation which can guarantee the mobile robot’s safety with



a prescribed probability threshold. The effectiveness of our
proposed algorithm and theoretical results are well verified by
numerical simulations and physical experiments.

The remainder of this paper is organized in the following
order. In Section II, some preliminary knowledge on ILQR
and MPC is introduced, and the problem to be solved by this
paper is formulated. In Section III, we propose a novel proba-
bilistic MPC approach and the corresponding motion planning
algorithm is also developed. In Section IV, we analyze the
motion planning of a two-wheeled robot using our proposed
framework. In Section V, the experimental results in both
numerical simulations and a physical testbed are provided. In
Section VI, the paper is summarized and concluded.

Notations: The notations used throughout this paper are
standard. ∥ · ∥ denotes the Euclidean norm for vectors. The
probability of event X is denoted by P(X). The expectation of
random variable X is denoted by E[X]. The notation d(x, y)
means the Euclidean distance between vector x and vector
y. A ≻ 0 (or A ⪰ 0) means A is positive definite (or
semidefinite). A > 0 (or A ≥ 0) means all elements of A are
positive (or nonnegative). The cumulative distribution function
of a zero-mean unit variance Gaussian random variable is
denoted by

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt.

The matrices and vectors are assumed to have compatible
dimensions if not explicitly mentioned.

II. PRELIMINARY

A. Iterative Linear Quadratic Regulator

ILQR is an efficient numerical tool to solve a nonlinear
optimal control problem.

Consider a discrete-time nonlinear system:

xk+1 = f(xk, uk) (1)

where xk ∈ Rn and uk ∈ Rm are the state and control input
at time step k, f(x, u) is the state transition function.

Assumption 1: f(x, u) satisfies the Lipschitz condition with
a Lipschitz constant γ > 0, i.e.,

∀x1, x2 ∈ Rn, u ∈ Rm, ∥f(x1, u)− f(x2, u)∥ ≤ γ∥x1−x2∥.

The finite-horizon LQR performance index of the control
system is defined as:

J = xT
NQfxN +

N−1∑
k=0

xT
kQxk + uT

kRuk (2)

where Qf ⪰ 0, Q ⪰ 0 and R ≻ 0 are the final state cost
matrix, intermediate state cost matrix and input cost matrix,
respectively. ILQR aims to design the control input and state
trajectory to minimize (2) subject to the nonlinear system
dynamics (1). The steps for solving this nonlinear optimal
control problem with ILQR are summarized as follows:

(1) Generate a feasible nominal control input and state
trajectory τ̄ := {x̄0, ū0, x̄1, ū1, . . . , x̄N−1, ūN−1, x̄N}.

(2) Linearize the system dynamics along the nominal tra-
jectory with δxk = xk − x̄k and δuk = uk − ūk:

δxk+1 = Akδxk +Bkδuk

Ak =
∂f(x, u)

∂x
|x̄k,ūk

Bk =
∂f(x, u)

∂u
|x̄k,ūk

(3)

(3) Backward optimize the control input through dynamic
programming with the linearized system dynamics.

(4) Run forward pass with optimized control sequence.
Adopt backtracking line search scheme to ensure the perfor-
mance is improved. Update nominal trajectory τ̄ .

(5) Iterative Step (2) to step (4) until J convergences. Return
the updated trajectory τ̄ .

B. Model Predictive Control

MPC relies on the system model to predict future trajecto-
ries and to optimize over them. Mathematically speaking, an
MPC problem can be formulated as follows:

min
u

J =

P−1∑
k=0

c(xk, uk)

s.t. xk+1 = f(xk, uk)

g(xk, uk) ≤ 0

h(xk, uk) = 0

where c(·), g(·) and h(·) denote the cost function, inequality
constraint and equality constraint, respectively, while P de-
notes the predictive time horizon.

C. Problem Statement

We consider a nonlinear system with process noise

xk+1 = f(xk, uk) + wk (4)

where wk is the i.i.d. white Gaussian noise at time step k
with covariance matrix Σ ≻ 0. The objective is to design the
control input sequence such that the LQR performance index J
is minimized. Meanwhile, the system should satisfy the safety
constraints subject to a prescribed probability. Mathematically,
the problem is formulated as follows:

Problem 1: (Constrained Nonlinear Optimal Control with
Process Noise)

min
u

J = E[xT
NQfxN +

N−1∑
k=0

xT
kQxk + uT

kRuk] (5)

s.t. xk = f(xk−1, uk−1) + wk−1 (6)
Λuk ∈ Uk, k = 0, . . . , N − 1 (7)
P(Ωxk ∈ Xk) ≥ ω, k = 1, . . . , N (8)

where Λ and Ω are matrix parameters, and Uk and Xk are
the safe sets associated with control input uk and state xk,
respectively. The corresponding unsafe sets of Uk and Xk are
Uc
k and X c

k . It is required that Ωxk ∈ Xk should hold with
a probability exceeding ω. The main difficulty of the above



problem is to satisfy the safety constraints as well as to achieve
the optimality of the controller simultaneously. Meanwhile the
control strategy needs to be computed efficiently to meet real-
time requirements of a physical platform.

III. MAIN RESULT

In this section, we propose a probabilistic framework to
analyze the trajectory of nonlinear systems with Gaussian
noise. We first reformulate the problem in the sense of expec-
tation and solve the nonlinear optimal control problem with
ILQR. Then we analyze the bound for the mean squared error
(MSE) between the real trajectory and the nominal trajectory.
Finally, we propose a probabilistic MPC approach and the
corresponding algorithm to solve Problem 1.

A. Expectation Analysis

Since wk is i.i.d. white Gaussian, E[xk+1] is equivalent to
E[f(xk, uk)]. Denote E[xk] as x̂k. To solve Problem 1, we
first ensure that x̂k can satisfy all state constraints. Hence
we consider a nonlinear optimal control problem subject to
expected constraints, which is stated as follows.

Problem 2: (Nonlinear Optimal Control with Expectation
Constraints)

min
x

J = x̂T
NQf x̂N +

N−1∑
k=0

x̂T
kQx̂k + uT

kRuk (9)

s.t. x̂k = f(x̂k−1, uk−1) (10)
Λuk ∈ Uk, k = 0, . . . , N − 1 (11)
Ωx̂k ∈ Xk, k = 1, . . . , N. (12)

Note that Problem 2 is a constrained nonlinear optimization
problem with a nonconvex feasible region. To tackle this
problem, we employ the ILQR solver to generate a feasible
trajectory and optimize it. More specifically, we leverage
the approach developed by [11] with a backtracking line-
search scheme. By satisfying the Armijo condition [20] in
the backtracking linear search iteration, the convergence of
ILQR can be guaranteed [14]. As the constraints may be
violated during the ILQR trajectory update, we continue to
check the updated trajectory until all constraints are satisfied
in the backtracking linear search iteration. Such technique
is also used in [17], [19]. With a given feasible trajectory
and a diminishing step size for line search along the descent
direction, it can guarantee that the algorithm converges and
the updated trajectory satisfies the constraints.

B. Variance Analysis

Due to the unbounded nature of Gaussian white noise, we
are interested in the mean squared error (MSE) between the
real trajectory and the planned trajectory. Define the difference
between actual state xk and its planned reference state x̄k as
ek, i.e., ek = xk−x̄k, the MSE as E[eTk ek]. Through analyzing
the error dynamics, we have following result:

y

x

Fig. 1: The top lines represent the replanned trajectory with T = 3, while the
bottom represents the trajectory without replanning. The red line indicates
the real trajectory, the blue line indicates the planned trajectory, and the
area within the dotted circles is the possible position of the mobile robot
due to the process noise. Notice that the MSE is increasing during the
movement. Through intermittently replaning the motion, the MSE between
the real trajectory and planned trajectory is bounded.

Theorem 1: For system (4) with a nominal trajectory satis-
fying (10) – (12), the following inequality holds

E[eTk ek] ≤ γ2kE[eT0 e0] +
k−1∑
i=0

γ2iTr(Σ)

where γ is the Lipschitz constant of function f(·).
Proof: The error dynamics is given by

e(k + 1) = f(xk, uk)− f(x̄k, uk) + wk

Denote ∆fk = f(xk, uk)− f(x̄k, uk), then the MSE is

E[eTk+1ek+1] = E[∆fT
k ∆fk] + Tr(Σ)

Since function f(·) satisfies the Lipschitz condition in Assump-
tion 1, we have the following inequality holds

∆fT
k ∆fk ≤ γ2eTk ek

which yields a recurrent relationship on E[eTk ek]:

E[eTk+1ek+1] ≤ γ2E[eTk ek] + Tr(Σ)

which further implies that

E[eTk ek] ≤ γ2kE[eT0 e0] +
k−1∑
i=0

γ2iTr(Σ)

The proof is completed. □

Corollary 1: If f(x, u) satisfies the constant turning rate and
velocity magnitude (CTRV) motion model [7], the following
inequality holds

E[eTk ek] ≤ E[eT0 e0] + kTr(Σ)

where Σ denotes the process noise covariance.

Proof: Under the CTRV assumption, we have γ = 1 then
the inequality follows immediately from Theorem 1. □

Notice that if γ < 1, the MSE is bounded by Tr(Σ)/(1 −
γ2). If γ ≥ 1, through replanning the trajectory during the
operation, it can always ensure that the actual state would not
deviate from the planned trajectory too much. The replanning
cycle is denoted as T ∈ Z. A graphical explanation on how
the replanning works is shown in Fig. 1.



C. Algorithmic Solution

Based on the expectation and variance analysis, Problem
1 can be solved by a probabilistic MPC approach with in-
termittent replanning. The pseudo-code for the corresponding
algorithm is shown in Algorithm 1. The core ingredients of
the algorithm include the following three parts:

1) An MPC-based outer loop for replanning the trajectory
to maintain safety during the operation.

2) An ILQR-based inner loop for producing a sequence
of optimized control inputs and reference states.

3) A line search scheme to ensure the convergence of ILQR
subject to the safety constraints.

Algorithm 1 Safety-preserving motion planning algorithm for
mobile robots with process noise
Given
System dynamics: xk+1 = f(xk, uk) + wk; initial state: x0; target
state: xd Cost: J = (xN − xd)

TQf (xN − xd) +
∑N−1

k=0 (xk −
xd)

TQ(xk − xd) + uT
kRuk

Initialize P > 0, ξ > 0, T > 0, ∆ ≥ 0, i = 0

// Outer loop on MPC control
while not arrive at the target do

if mod(i, T ) == 0 then
x̄0 ← xi

Generate τ̄ := {x̄0, ū0, x̄1, ū1, . . . , x̄N−1, ūN−1, x̄N}
Calculate the cost of τ̄ : J̄
// Inner loop on ILQR control
while |J − J̄ |/|J̄ | > ξ do

// System dynamics linearization
for k = 0 to k = P − 1 do

Ak ← ∂f(x,u)
∂x
|x̄k,ūk

Bk ← ∂f(x,u)
∂u
|x̄k,ūk

end
// Backward Pass
PP ← Qf , pP ← Qf (x̄P − xd)
for k = P − 1 to k = 0 do

Hk ← R+BT
k Pk+1Bk

Gk ← BT
k Pk+1Ak

gk ← Ruk +BT
k pk+1

Kk ← −H−1Gk

lk ← −H−1gk
pk ← Q(x̄k − xd) +AT

k pk+1 +KT
k Hklk

+KT
k gk +GT

k lk
Pk ← Q+AT

kPk+1Ak +KT
k HkKk

+KT
k Gk +GT

kKk

end
// Line search and forward pass
α← 1, αd > 1
while J > J̄ or constraints are violated do

Update the control: uk ← ūk+αlk+Kk(xk− x̄k)
Forward simulate the trajectory τ
Calculate the cost of updated trajectory J
α← α/αd

end
τ̄ ← τ

end
i← 0

end
Forward execute the control: xi+1 = f(xi, ui) + wi

i← i+ 1
end

X̂ c
k

X c
k

Fig. 2: An illustrated example on X c
k and X̂ c

k . The region within the solid
line indicates X c

k , and the region within the hash indicates X̂ c
k .

Due to the existence of the noise, we consider the soft
unsafe set X̂ c

k of X c
k , which is defined as follows:

X̂ c
k = {xk|d(Ωxk,X c

k ) ≤ ∆}

where ∆ > 0 denotes a safety margin that should be con-
sidered when doing motion planning, and d(x, S) denotes the
minimum Euclidean distance between x and y ∈ S, which can
be calculated as follows

d(x, S) = min
y∈S

d(x, y), x /∈ S

An example on X c
k and X̂ c

k is shown in Fig. 2.

Theorem 2: Through motion planning using Algorithm 1
with a safety margin

∆ ≥ Φ−1((1 + ω)/2)
√

T Tr(Σ),

it holds that P(Ωxk ∈ Xk) ≥ ω for k = 1, . . . , N .

Proof: Denoting the variance of ek as σ, we have:

P(∥ek∥ ≤ ∆) = 2Φ(
∆

σ
)− 1.

Note that by considering X̂ c
k in planning, if ∥ek∥ ≤ ∆ then

d(Ωxk,X c
k ) ≥ 0, which indicates Ωxk ∈ Xk. Hence with

∆ ≥ Φ−1((1 + ω)/2)σ,

P(Ωxk ∈ Xk) ≥ ω. Following Corollary 1, through planning
with MPC cycle T , E[eTk ek] ≤ T Tr(Σ). Hence with

∆ ≥ Φ−1((1 + ω)/2)
√
T Tr(Σ),

P(Ωxk ∈ Xk) ≥ ω. The proof is completed. □

IV. MOTION PLANNING FOR MOBILE VEHICLE

In this section, we model a two-wheeled mobile robot with
our proposed framework. We first present the system dynamics
of the two-wheeled mobile robot, then we discuss the choice
of the objective function and safety constraints.



A. System Dynamics

The mobile robot has a differential-wheeled locomotive
which can be modeled as the kinematic unicycle model shown
in Fig. 3. The state of a differential-wheel robot at time step
k is [xp

k, y
p
k, θk]

T, capturing its position and orientation in the
global frame. The velocity vector is [vk, ωk]

T, containing the
linear velocity and angular velocity of the mobile robot. The
dynamics of the kinematic unicycle model is:

ẋk =

 ẋp
k

ẏpk
θ̇k

 =

 vk cos θk
vk sin θk

ωk

 =

 cos θk 0
sin θk 0
0 1

[
vk
ωk

]
The model in discrete-time form is given by:

xk+1 =

 xp
k+1

ypk+1

θk+1

 =

 xp
k

ypk
θk

+ δt

 cos θk 0
sin θk 0
0 1

[
vk
ωk

]
where δt is the sampling time.

The control input uk = [vrk, v
l
k]

T contains the rotational
speed of the left and right wheels. The transformation between
uk and [vk, wk]

T follows with the unicycle model kinematic
constraint: [

vk
ωk

]
=

[
R/2 R/2
R/L −R/L

] [
vrk
vlk

]
where R and L are the radius of wheels and body length of
robot, respectively.

y

x

v

R

L

θ

w

(x, y)

Fig. 3: Two-wheeled unicycle model.

B. Objective Function and Constraints

We consider the scenario that the mobile robot goes around
obstacles and stops at the target position. The objective func-
tion is given by:

J =E[(xN − xd)
TQf (xN − xd)+

+

N−1∑
k=0

(xk − xd)
TQ(xk − xd) + uT

kRuk]

where xd is the target position. To generate a feasible tra-
jectory, we implemented a path planning algorithm using the
potential field method [21]. As an alternative, the control

framework is compatible with any controller that can generate
a feasible trajectory for the mobile robot.

Two practical constraints on the state and control input
which the mobile robot should not violate during the oper-
ation are considered, including the motor’s rotational speed
constraints and the obstacle avoidance constraints.

Motor’s rotational speed constraints: The motor’s rotational
speed of the mobile robot should be bounded based on the
motor force limit. Hence Λuk ∈ Uk can be formulated as an
inequality constraint:

u ≤ uk ≤ u

where u and u are the minimum and maximum control input.
Obstacle avoidance constraint: The mobile robot should

always keep a certain distance from any obstacle. Hence
Ωxk ∈ Xk can be formulated as:

d(Ωxk,X c
k ) ≥ 0 with Ω =

[
1 0 0
0 1 0

]
where X c

k is the infeasible region in R2 at time step k.

V. EXPERIMENTAL RESULT

We conduct extensive numerical simulations and physical
experiments to verify the proposed algorithm in terms of
safety, effectiveness, and computation time. We compare the
computation time and LQR performance of our algorithm and
the CILQR algorithm in [17], which considers a similar setup
for mobile robots. Then we conduct Monte Carlo simulations
to evaluate the safety probability with our algorithm for
different MPC replanning frequencies. Finally, to evaluate the
real-time performance of our control framework, we conduct
several motion planning experiments in a physical testbed.

A. Simulation Results without Uncertainty

The simulation experiments are done in a rectangle arena
with several obstacles. The radius of circular obstacles is
0.5m while the length of square obstacles is 1m. The starting
position and the target position are randomly generated, and ∆
is set to be zero. An example of the arena is shown in Fig. 4.
u and u is set to [−65,−65]T and [65, 65]T, respectively. The
average time horizon is N = 1000. The simulator is written
in Matlab and runs on a desktop with a standard CPU. To
compare the computation time and LQR performance on our
control framework and CILQR [17], we run 1000 Monte Carlo
tests. The simulation results are shown in TABLE I:

TABLE I: Runtime and LQR Performance Comparison

Algorithm Time (s) J/JCILQR (%)
CILQR in [17] 3.029 100%
Ours without replanning 0.256 107%
Ours with T = 50 0.450 86%
Ours with T = 10 2.645 69%
Ours with T = 5 3.298 62%

Notice that without replanning by MPC, our algorithm is
10 times faster than CILQR with negligible performance loss.
Through replanning the trajectory during the operation, our



algorithm can achieve better LQR performance compared with
CILQR while the computation time is maintained within an
acceptable range for real-time implementation.

0 1 2 3 4 5

0

1

2

3
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5

Fig. 4: Trajectories of the mobile robot running in a noiseless simulation
environment. The grey areas indicate infeasible regions in the arena. The blue
cross marker is the starting position, and the red star marker is the target
position, which is randomly generated.

B. Simulation Results with Uncertainty

In this scenario, the simulation environment is the same as
the one in Section V-A. We add zero-mean Gaussian noise
to the mobile robot to evaluate the MSE and the probability
of constraint satisfaction with 1000 Monte Carlo tests. The
standard deviation of the noise on xp

k and ypk is 1cm, while
the standard deviation of the noise on θk is set to 1◦. The
probabilities of safety constraints satisfaction using CILQR
and our algorithm are shown in TABLE II.

TABLE II: Constraint Satisfaction Probability Comparison

Algorithm ∆ (m) Safety Probability
CILQR in [17] 0 40.2%
CILQR in [17] 0.05 58.9%
Ours with T = 15 0.05 86.2%
Ours with T = 10 0.05 91.3%
Ours with T = 5 0.05 96.3%

It is easy to see that the safety probability with our algorithm
is much higher than the one with CILQR.

C. Practical Results in a Physical Testbed

In this scenario, we demonstrate different control tasks in a
physical testbed. In the testbed, an autonomous ground vehicle
(AGV) is running in a rectangle arena with several obstacles. A
server is connected to a Vicon system, which can continuously
receive the poses of the AGV and the obstacles, and send
commands to the AGV over the wireless network socket. Fig.
5 shows our testbed environment.

Fig. 5: Physical testbed environment.

The experiment shows that the proposed probabilistic MPC
approach can be implemented online with C++, and the
CPU computation time per MPC cycle is strictly less than
2ms. Without replanning, the AGV cannot satisfy the safety
constraints during the movement due to the existence of noise.
Without MPC, the AGV cannot stop at the target position
accurately. The proposed probabilistic MPC approach shows
the capability in satisfying safety constraints and achieving op-
timality simultaneously. We also demonstrate the effectiveness
of our algorithm with moving obstacles. The full experiment
video is available at https://youtu.be/mAobl05QWyQ.

VI. CONCLUSION

In this paper, we studied the motion planning problem for
mobile robots with process noise subject to safety constraints.
The mobile robot was modeled as a nonlinear system with
Gaussian process noise. To satisfy the safety constraints on
the mobile robot’s trajectory, a novel probabilistic MPC ap-
proach was proposed where the MPC frequency is determined
according to the safety probability. We further developed
an online algorithm that can guarantee the mobile robot’s
safety with a prescribed probability threshold. Finally, several
numerical simulations, as well as physical experiments, were
provided to verify the effectiveness of our proposed approach.
It was shown that the probabilistic MPC approach has a
lower computational burden and higher safety probability than
traditional safe motion planning algorithms. The probabilistic
MPC approach proposed in this paper is not limited to a
single mobile robot. It can also be extended to the motion
planning and formation control of multi-agent systems, which
is a possible direction for future research.
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